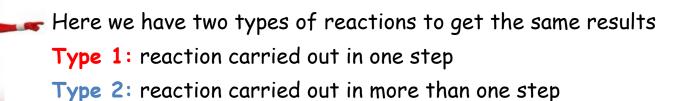



Salam Prep secondary School Language department Secondary stage

2020

## Hess's law




Assiut Governorate Assiut Educational Directorate Salam Prep Secondary Schools Tel: 088/2333083 - Fax. 088/2330603 P.O.Box: 105 Assiut





Heat of reaction is a constant amount in standard conditions, whether the reaction is carried out in one step or a number of steps.





The problem here is : How to get **type 1** ( one equation) from **type 2** ( more than one equation )



Any equation consists of two sides Reactants side and Product side



Hess's law is dealing with the chemical equations as if they were algebraic equations that can be:

- \* added together
- \* subtracted from each other
- \* multiplying their coefficients in a constant factor

When the chemical substance in the opposite side of chemical equation:

# The products we need found in the reactants side .# The reactants we need found in the products side

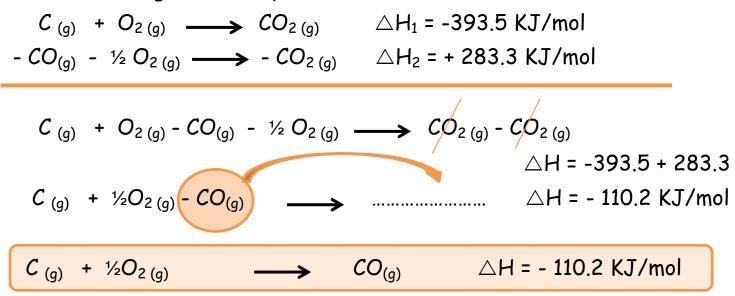


By applying Hess's law, calculate the heat of formation of carbon mono oxide CO from the two following equations:

(1)  $C_{(g)} + O_{2(g)} \longrightarrow CO_{2(g)} \bigtriangleup H_1 = -393.5 \text{KJ/mol}$ (2)  $CO_{(g)} + \frac{1}{2}O_{2(g)} \longrightarrow CO_{2(g)} \bigtriangleup H_2 = -283.3 \text{KJ/mol}$ 



**But** it lies in the reactants side in equation (2)


to change it from reactants side to products side we need to change its sign from (+) to (-)

by multiplying equation (2) by (-) sign to be -(2)

$$-CO_{(g)} - \frac{1}{2}O_{2(g)} \longrightarrow -CO_{2(g)} \bigtriangleup H_2 = -(-283.3 \text{KJ/mol})$$

$$\triangle H_2 = + 283.3 \text{KJ/mol}$$

Then we adding the two equations (1) + [-(2)]



This is the required reaction for formation of carbon monoxide CO

Salam prap secondary secondary school - Chemistry for Sec. 1 - 2020



Calculate the heat of combustion of nitric oxide NO in the following equations:

 $NO_{(g)} + \frac{1}{2}O_2 \longrightarrow NO_2$ 

By knowing the two following equations:

- (1)  $\frac{1}{2} N_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow NO_{(g)} \triangle H_1 = +90.29 \text{ KJ/mol}$
- (2)  $\frac{1}{2}N_{2(g)} + O_{2(g)} \longrightarrow NO_{2(g)} \bigtriangleup H_2 = +33.2 \text{ KJ/mol}$

Here the reactant we need is NO

**\_ But** it lies in the products side in equation (1)

to change it from products side to reactants side we need to change its sign from (+) to (-)

by multiplying equation (1) by (-) sign to be -(1)

-  $\frac{1}{2} N_{2(g)} - \frac{1}{2}O_{2(g)} \longrightarrow - NO_{(g)} \triangle H_1 = - (+90.29 \text{ KJ/mol})$ 

Then we adding the two equations [-(1)] + (2)=  $\frac{1}{2} N_{2(g)} - \frac{1}{2}O_{2(g)} \longrightarrow - NO_{(g)} \Delta H_1 = -(+90.29 \text{ KJ/mol})$   $\frac{1}{2} N_{2(g)} + O_{2(g)} \longrightarrow NO_{2(g)} \Delta H_2 = +33.2 \text{ KJ/mol}$ =  $\frac{1}{2} N_{2(g)} - \frac{1}{2}O_{2(g)} + \frac{1}{2}N_{2(g)} + O_{2(g)} \longrightarrow - NO_{(g)} + NO_{2(g)}$   $\Delta H = -(+90.29) + 33.2$  $\frac{1}{2}O_{2(g)} \longrightarrow -NO_{(g)} + NO_{2(g)} \Delta H = -57.09 \text{ KJ/mol}$ 

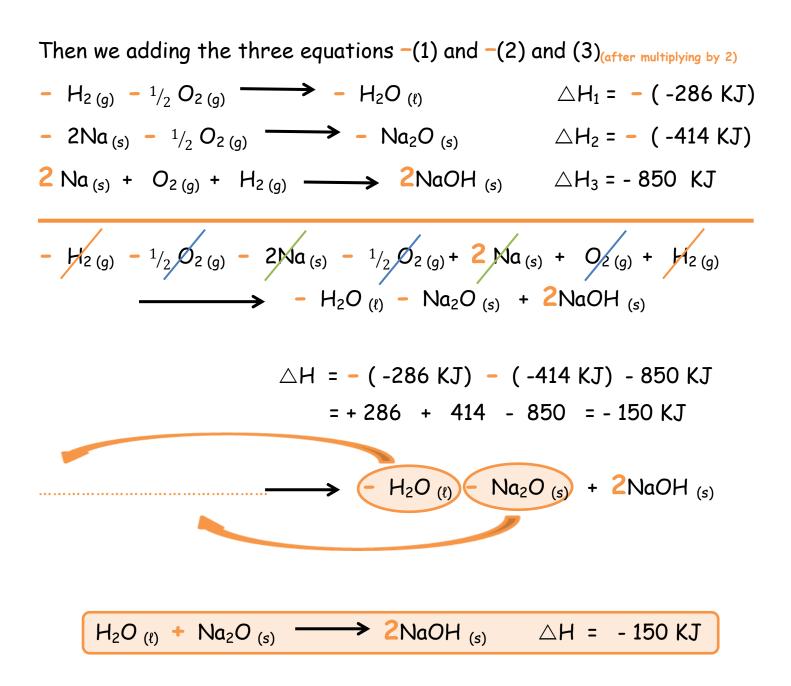
This is the required reaction for combustion of nitric oxide N

Salam prap secondary secondary school - Chemistry for Sec. 1 - 2020

When the chemical substance in the opposite side of chemical equation: With difference in coefficients:

What is the value of  $\triangle H$  of the reaction:Na2O (s) + H2O (t)  $\longrightarrow$  2 NaOH (s)By knowing the two following equations:(1)  $H_{2(g)} + \frac{1}{2}O_{2(g)} \longrightarrow H_2O(t)$  $\triangle H_1 = -286$  KJ(2)  $2Na(s) + \frac{1}{2}O_{2(g)} \longrightarrow Na_2O(s)$  $\triangle H_2 = -414$  KJ(3)  $Na(s) + \frac{1}{2}O_{2(g)} + \frac{1}{2}H_{2(g)} \longrightarrow NaOH(s)$  $\triangle H_3 = -425$  KJ $AH_2O(t)$ 

Na<sub>2</sub>O (s) is a product in equation (2) with the same coefficient And  $H_2O$  (t) is a product in equation (1) with the same coefficient


To change Na<sub>2</sub>O (s) and  $H_2O$  (t) from products side to reactants side we need to change their sign from (+) to (-)

by multiplying equations (1) and (2) by (-) sign to becomes:

-  $H_{2(g)} - \frac{1}{2}O_{2(g)} \longrightarrow - H_2O_{(l)} \bigtriangleup H_1 = - (-286 \text{ KJ})$ -  $2Na_{(s)} - \frac{1}{2}O_{2(g)} \longrightarrow - Na_2O_{(s)} \bigtriangleup H_2 = - (-414 \text{ KJ})$ 

While the product we need is 2 NaOH (s) NaOH is a product in equation (3) but with different coefficient So we need to change the coefficient of NaOH by multiplying equation (3) by (2) to becomes: 2 [Na<sub>(s)</sub> +  $1/_2 O_{2(g)} + 1/_2 H_{2(g)} \longrightarrow$  NaOH (s)  $\triangle H_3 = -425$  KJ] 2 Na<sub>(s)</sub> +  $O_{2(g)} + H_{2(g)} \longrightarrow$  2NaOH (s)  $\triangle H_3 = 2$  (-425 KJ)  $\triangle H_3 = -850$  KJ

Case 2



This is the thermochemical equation represents the formation of  $NaOH_{(s)}$ 

